计算方法采用7参数坐标变换法。由于点云不存在扭曲和缩放,因此点云坐标转换为刚体变换,三坐标维修,缩放因子为1,其他6参数包括3个角度转换量、3个坐标平移量。
设两个测站点云集合P={pi}, Q={qi},i=1,2,···,三坐标测量范围,N,以式(1) 为目标函数采用下限值二乘法计算得到R和T的解答,使得f(R,T) 达到下限
式中,R表示旋转矩阵;T表示平移矩阵。
2.2基于面的ICP准确匹配
为了解决ICP算法效率问题,提高算法准确度,首先对点云按下列步骤进行预处理:
(1)对测站点云包围盒按某初始边长均匀划分为立方体栅格。
(2)遍历每一个立方体栅格,将其内的点云采用下限值二乘法拟合成平面。
(3)若拟合的平面的标准偏差小于阈值,则对立方体栅格内的点云计算重心点,记录重心点的坐标和所拟合平面的法向量。
(4)否则,立方体栅格内的点云的点个数大于阈值,且立方体栅格边长大于规定晓得边长,则将该立方体栅格继续均匀细分为8个小立方体栅格,重复步骤(2)。
(5)全部立方体栅格处理完毕,产生了由含平面法向量的重心点构成的新点集。
首先按照初始边长为1m划分立体空间块,按照上述步骤对各测站内点云进行预处理,设定方块平面拟合标准偏差阈值为2cm,方块内少点个数设为100,三坐标搬迁,下限边设为20cm。
在粗拼接提供了初始配准矩阵的前提下,对预处理后的点云采用点到切平面的ICP算法[13]进行测块内多站自动准确拼接。设经上述处理后两测站新点集为P'、Q',则目标函数为式(2),求R'和T'的解答,使得f(R',T') 达到下限
式中,R'为旋转矩阵;T'为平移矩阵;qi为Q'中的点;pi为P'中的点;Hpi为pi对应的切平面;D(R'qi+T',Hpi)为点qi到切平面Hqi的距离。
重庆欣晟泰提供,欢迎来电垂询
为了解决三维测量仪器的小型化问题,设计了一种数字投影结构光三维测量仪光路结构,并用Zemax软件进行了性能优化。该结构分为投影光路和照相光路,投影镜头采用反远距结构,由5片透镜组成,全视场调制传递函数大于0.35。照相镜头采用双高斯结构,甘孜三坐标,由6片透镜组成,全视场调制传递函数大于0.12。两镜头口径均小于14 mm,长度小于40 mm,像面照度均大于90%,可以对80~120 mm远的物体进行测量。投影图像像素密度为1 028×768,相机拍摄图像像素密度为1 280×960,在工作距离100 mm处可以测量28 mm×21 mm的表面。镜头全部采用球面透镜。该结构具有测量精度高、成本低、加工容易、体积小等优点。
重庆欣晟泰提供,欢迎来电垂询
您好,欢迎莅临礼智鑫,欢迎咨询...
![]() 触屏版二维码 |